Welcome toVigges Developer Community-Open, Learning,Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
658 views
in Technique[技术] by (71.8m points)

where to start with audio synthesis on iPhone

I'd like to build a synthesizer for the iPhone. I understand that it's possible to use custom audio units for the iPhone. At first glance, this sounds promising, since there's lots and lots of Audio Unit programming resources available. However, using custom audio units on the iPhone seems a bit tricky ( see: http://lists.apple.com/archives/Coreaudio-api/2008/Nov/msg00262.html)

This seems like the sort of thing that loads of people must be doing, but a simple google search for "iphone audio synthesis" doesn't turn up anything along the lines of a nice and easy tutorial or recommended tool kit.

So, anyone here have experience synthesizing sound on the iPhone? Are custom audio units the way to go, or is there another, simpler approach I should consider?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I'm also investigating this. I think the AudioQueue API is probably the way to go.

Here's as far as I got, seems to work okay.

File: BleepMachine.h

//
//  BleepMachine.h
//  WgHeroPrototype
//
//  Created by Andy Buchanan on 05/01/2010.
//  Copyright 2010 Andy Buchanan. All rights reserved.
//

#include <AudioToolbox/AudioToolbox.h>

// Class to implement sound playback using the AudioQueue API's
// Currently just supports playing two sine wave tones, one per
// stereo channel. The sound data is liitle-endian signed 16-bit @ 44.1KHz
//
class BleepMachine
{
    static void staticQueueCallback( void* userData, AudioQueueRef outAQ, AudioQueueBufferRef outBuffer )
    {
        BleepMachine* pThis = reinterpret_cast<BleepMachine*> ( userData );
        pThis->queueCallback( outAQ, outBuffer );
    }
    void queueCallback( AudioQueueRef outAQ, AudioQueueBufferRef outBuffer );

    AudioStreamBasicDescription m_outFormat;

    AudioQueueRef m_outAQ;

    enum 
    {
        kBufferSizeInFrames = 512,
        kNumBuffers = 4,
        kSampleRate = 44100,
    };

    AudioQueueBufferRef m_buffers[kNumBuffers];

    bool m_isInitialised;

    struct Wave 
    {
        Wave(): volume(1.f), phase(0.f), frequency(0.f), fStep(0.f) {}
        float   volume;
        float   phase;
        float   frequency;
        float   fStep;
    };

    enum 
    {
        kLeftWave = 0,
        kRightWave = 1,
        kNumWaves,
    };

    Wave m_waves[kNumWaves];

public:
    BleepMachine();
    ~BleepMachine();

    bool Initialise();
    void Shutdown();

    bool Start();
    bool Stop();

    bool SetWave( int id, float frequency, float volume );
};

// Notes by name. Integer value is number of semitones above A.
enum Note
{
    A       = 0,
    Asharp,
    B,
    C,
    Csharp,
    D,
    Dsharp,
    E,
    F,
    Fsharp,
    G,
    Gsharp,

    Bflat = Asharp,
    Dflat = Csharp,
    Eflat = Dsharp,
    Gflat = Fsharp,
    Aflat = Gsharp,
};

// Helper function calculates fundamental frequency for a given note
float CalculateFrequencyFromNote( SInt32 semiTones, SInt32 octave=4 );
float CalculateFrequencyFromMIDINote( SInt32 midiNoteNumber );

File:BleepMachine.mm

 //
//  BleepMachine.mm
//  WgHeroPrototype
//
//  Created by Andy Buchanan on 05/01/2010.
//  Copyright 2010 Andy Buchanan. All rights reserved.
//

#include "BleepMachine.h"

void BleepMachine::queueCallback( AudioQueueRef outAQ, AudioQueueBufferRef outBuffer )
{
    // Render the wave

    // AudioQueueBufferRef is considered "opaque", but it's a reference to
    // an AudioQueueBuffer which is not. 
    // All the samples manipulate this, so I'm not quite sure what they mean by opaque
    // saying....
    SInt16* coreAudioBuffer = (SInt16*)outBuffer->mAudioData;

    // Specify how many bytes we're providing
    outBuffer->mAudioDataByteSize = kBufferSizeInFrames * m_outFormat.mBytesPerFrame;

    // Generate the sine waves to Signed 16-Bit Stero interleaved ( Little Endian )
    float volumeL = m_waves[kLeftWave].volume;
    float volumeR = m_waves[kRightWave].volume;
    float phaseL = m_waves[kLeftWave].phase;
    float phaseR = m_waves[kRightWave].phase;
    float fStepL = m_waves[kLeftWave].fStep;
    float fStepR = m_waves[kRightWave].fStep;

    for( int s=0; s<kBufferSizeInFrames*2; s+=2 )
    {
        float sampleL = ( volumeL * sinf( phaseL ) );
        float sampleR = ( volumeR * sinf( phaseR ) );

        short sampleIL = (int)(sampleL * 32767.0);
        short sampleIR = (int)(sampleR * 32767.0);

        coreAudioBuffer[s] =   sampleIL;
        coreAudioBuffer[s+1] = sampleIR;

        phaseL += fStepL;
        phaseR += fStepR;
    }

    m_waves[kLeftWave].phase = fmodf( phaseL, 2 * M_PI );   // Take modulus to preserve precision
    m_waves[kRightWave].phase = fmodf( phaseR, 2 * M_PI );

    // Enqueue the buffer
    AudioQueueEnqueueBuffer( m_outAQ, outBuffer, 0, NULL ); 
}

bool BleepMachine::SetWave( int id, float frequency, float volume )
{
    if ( ( id < kLeftWave ) || ( id >= kNumWaves ) ) return false;

    Wave& wave = m_waves[ id ];

    wave.volume = volume;
    wave.frequency = frequency;
    wave.fStep = 2 * M_PI * frequency / kSampleRate;

    return true;
}

bool BleepMachine::Initialise()
{
    m_outFormat.mSampleRate = kSampleRate;
    m_outFormat.mFormatID = kAudioFormatLinearPCM;
    m_outFormat.mFormatFlags = kAudioFormatFlagIsSignedInteger | kAudioFormatFlagIsPacked;
    m_outFormat.mFramesPerPacket = 1;
    m_outFormat.mChannelsPerFrame = 2;
    m_outFormat.mBytesPerPacket = m_outFormat.mBytesPerFrame = sizeof(UInt16) * 2;
    m_outFormat.mBitsPerChannel = 16;
    m_outFormat.mReserved = 0;

    OSStatus result = AudioQueueNewOutput(
                                          &m_outFormat,
                                          BleepMachine::staticQueueCallback,
                                          this,
                                          NULL,
                                          NULL,
                                          0,
                                          &m_outAQ
                                          );

    if ( result < 0 )
    {
        printf( "ERROR: %d
", (int)result );
        return false;
    }

    // Allocate buffers for the audio
    UInt32 bufferSizeBytes = kBufferSizeInFrames * m_outFormat.mBytesPerFrame;

    for ( int buf=0; buf<kNumBuffers; buf++ ) 
    {
        OSStatus result = AudioQueueAllocateBuffer( m_outAQ, bufferSizeBytes, &m_buffers[ buf ] );
        if ( result )
        {
            printf( "ERROR: %d
", (int)result );
            return false;
        }

        // Prime the buffers
        queueCallback( m_outAQ, m_buffers[ buf ] );
    }

    m_isInitialised = true;
    return true;
}

void BleepMachine::Shutdown()
{
    Stop();

    if ( m_outAQ )
    {
        // AudioQueueDispose also chucks any audio buffers it has
        AudioQueueDispose( m_outAQ, true );
    }

    m_isInitialised = false;
}

BleepMachine::BleepMachine()
: m_isInitialised(false), m_outAQ(0)
{
    for ( int buf=0; buf<kNumBuffers; buf++ ) 
    {
        m_buffers[ buf ] = NULL;
    }
}

BleepMachine::~BleepMachine()
{
    Shutdown();
}

bool BleepMachine::Start()
{
    OSStatus result = AudioQueueSetParameter( m_outAQ, kAudioQueueParam_Volume, 1.0 );
    if ( result ) printf( "ERROR: %d
", (int)result );

    // Start the queue
    result = AudioQueueStart( m_outAQ, NULL );
    if ( result ) printf( "ERROR: %d
", (int)result );

    return true;
}

bool BleepMachine::Stop()
{
    OSStatus result = AudioQueueStop( m_outAQ, true );
    if ( result ) printf( "ERROR: %d
", (int)result );

    return true;
}

// A    (A4=440)
// A#   f(n)=2^(n/12) * r
// B    where n = number of semitones
// C    and r is the root frequency e.g. 440
// C#
// D    frq -> MIDI note number
// D#   p = 69 + 12 x log2(f/440)
// E
// F    
// F#
// G
// G#
//
// MIDI Note ref: http://www.phys.unsw.edu.au/jw/notes.html
//
// MIDI Node numbers:
// A3   57
// A#3  58
// B3   59
// C4   60 <--
// C#4  61
// D4   62
// D#4  63
// E4   64
// F4   65
// F#4  66
// G4   67
// G#4  68
// A4   69 <--
// A#4  70
// B4   71
// C5   72

float CalculateFrequencyFromNote( SInt32 semiTones, SInt32 octave )
{
    semiTones += ( 12 * (octave-4) );
    float root = 440.f;
    float fn = powf( 2.f, (float)semiTones/12.f ) * root;
    return fn;
}

float CalculateFrequencyFromMIDINote( SInt32 midiNoteNumber )
{
    SInt32 semiTones = midiNoteNumber - 69;
    return CalculateFrequencyFromNote( semiTones, 4 );
}

//for ( SInt32 midiNote=21; midiNote<=108; ++midiNote )
//{
//  printf( "MIDI Note %d: %f Hz 
",(int)midiNote,CalculateFrequencyFromMIDINote( midiNote ) );
//}

Update: Basic usage info

  1. Initialise. Somehere near the start, I'm using initFromNib: in my code

    m_bleepMachine = new BleepMachine;
    m_bleepMachine->Initialise();
    m_bleepMachine->Start();
    
  2. Now the sound playback is running, but generating silence.

  3. In your code, call this when you want to change the tone generation

    m_bleepMachine->SetWave( ch, frq, vol );
    
    • where ch is the channel ( 0 or 1 )
    • where frq is the frequency to set in Hz
    • where vol is the volume ( 0=-Inf db, 1=-0db )
  4. At program termination

    delete m_bleepMachine;
    

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to Vigges Developer Community for programmer and developer-Open, Learning and Share
...